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Abstract 

The multiplication of vector fields on a Frobenius manifold h4 defines a Lagrangian submanifold 
of T’M. In this paper, we give a proof of this “folklore” fact based on the formalism of Higgs pairs 
and we explain how it can be applied in the quantum cohomology situation (following Givental and 
Kim (1995)). 0 1998 Elsevier Science B.V. 
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0. Introduction 

The notion of a Frobenius manifold has been the focus of extensive work and papers of 

Dubrovin in the recent years. This notion “transcends an enormous number of mathematical 
boundaries”. In addition to the panoramic paper [5], some geometrical aspects are described 
in [ 121 (from which paper comes the above quotation), further relations with isomonodromy 
deformations and period mappings being developed in [ 181. 

It is worthwhile mentioning that, according to Givental [7], the mirror symmetry con- 
jecture can be understood as a correspondence between two types of Frobenius manifolds 
(topological a-models, or quantum cohomology, vs. Landau-Ginsburg models, or defor- 
mations of singularities). 
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Recall that a Frobenius structure on a manifold is an intricate mixture of various structures, 
mainly; 
- a flat metric, 
- a ring structure on the sheaf of vector fields, 
- a vector field, 
subject to a couple of compatibility conditions. 

Some of the geometrical features of the Frobenius manifold are nicely described using 
flat coordinates determined by the metric, for instance, the fact that Frobenius manifolds 
provide solutions of the WDVV equations. For some others, it is more convenient to use a 
different set of coordinates, the so-called “canonical coordinates”, which are mostly defined 
by the product. 

The aim of this paper is modest: in some sense, it is only devoted to these “canonical 
coordinates”. More precisely, I will try to extract, from all the geometric features present 
on a Frobenius manifold, those which do not depend on the metric. Also, I will try to avoid 
working in coordinates and will work from the global point of view. 

In this spirit, the existence of canonical coordinates can be expressed as “the multiplication 
of vector fields on a Frobenius manifold M defines a Lagrangian subvariety of the cotangent 
bundle T* M”. 

In Section 1, we will give a proof of the Lagrangian property based on the formalism of 
Higgs pairs (see for example [5,10,12] for alternative proofs). 

I will then explain (following Givental and Kim [lo]) how to apply this property to the 
quantum cohomology situation (by the way, I will also explain what the Frobenius structure 
on quantum cohomology is). 

This paper is expository. It should be considered as an advertisement for the beautiful 
ideas contained in the papers mentioned above. 

In this paper, the manifold M will be assumed to be complex algebraic (in applications, 
M will be affine, more precisely a vector space or a complex torus). All vector bundles will 
be complex. 

1. Higgs pairs, spectral covers and Frobenius structures 

1.1. Generalities on Higgs pairs and spectral covers 

In general (see [22]), a Higgspair over a manifold M is a pair (E, a), where E + M is 
a vector bundle and CZ’ : TM + End(E) is a morphism such that Sz A 6’ = 0. This notion 
goes back to Hitchin’s systems [ 111, where M was a curve and (E, Q) was considered as 
an element of the cotangent bundle T*N of the moduli space of stable bundles over M. 
Notice that the condition 52 A fi = 0 means that the various endomorphisms tic(o) (for 
a! E Tc M) commute, a condition which is automatically fulfilled if dim M = 1. 

Any Higgs pair defines, via the eigenvalues of Q, a spectral cover (see [4]), i.e., a 
subvariety L c T*M such that the projection 

L c T*M -% M 
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is a finite map (its degree is the rank N of the vector bundle E). Here is the (algebroge- 
ometrical) definition. As R A S2 = 0, the morphism R : TM + End(E) extends to a 
morphism 

Sym(TM) - End(E) 

Now, the sheaf of local sections of Sym(TM) is nothing other than the sheaf rT,C?~..~ of 
regular functions on the cotangent bundle T* M: a local section u 1 . . . a,, of Sym( T M) 

detines a function on T*M by 

(< is a point of M, p a linear form on T, M and the ai([ are vectors in Tc M). Thus the 
C3M-module E gets an OT+M- module structure. Our spectral cover L is just the support of 
E as an OT*M-module. 

Set-theoretically, this is to say that a point (6. cl) of T*M is in L if and only if, for any 
(local) function ,f : T*M + C that annihilates local sections of E. ,f'([. p ) = 0. 

Let (Y be a vector field defined on an open subset U of M. Associated with LY is a section 

P, : (6. p) ++ det(Rt(a) - ~,t(cy) IdO 

of r*AN E over T*U c T'M. Assuming that there is at least some local vector field u for 
which the minimal and characteristic polynomials coincide, the spectral cover can also be 
defined by the vanishing of all the PLY’s, 

Assume that at some point to E M, all the R~(u) for u E TC M are diagonalisable. Over 
a neighbourhood of <n, the bundle E + M then splits as a sum 

ET&w; (I) 

of line bundles that are the eigenline bundles of Q (recall that the fit (a) commute so that 
they can be simultaneously diagonalised). To each Wi and each (Y E Tt M corresponds an 
eigenvalue pi(w. <) of S2,(a). Such a pi can be considered as a local section of T*M and 
altogether. the p;‘s define a subvariety L with a degree N map to M. 

Remark. The spectral cover (and the projection onto M) has singularities over the com- 
plement of the set of semi-simple points. 

Let us call such a point 60 a semi-simple poilzt. If moreover, for some (Y. the eigenvalues 
of Q,,(a) are all distinct, we will call it a regular semi-simple point. 
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I .2. Frobenius bundles and spectral Lagrangians 

Assume we are given a local trivialisation of E, so that 52 is indeed a l-form matrix. 
Assume that G? is closed (da = 0). 

Lemma 1.1. !f dR = 0, near a regular semi-simple point, L is a Lagrangian subvarieq 
of T*M. 

Proof. Let 40 be a semi-simple point. On a suitable neighbourhood of 40, choose a generator 
wi for each line bundle Wi in the decomposition (1). Let Fi be the corresponding eigenvalue, 
viewed as a local section of T*M. The image of pi is one of the N branches of L over the 
neighbourhood of 40 we are considering. To say that L is Lagrangian is to say that all p; ‘s 
are closed 1 -forms on M. We can now differentiate the relation 

to get 

(da) Wj + i2 . dwj = (dp,j)uj,j + ~j du)j, (2) 

Our assumption is that dR = 0. Let us look at dwj. It can be written in the same basis as 

du)j = kajuji 
i=l 

for some l-forms ai, so that 

N 

R dwj - p,j dru,i = Caj(,.li - pj)w;. 
i=l 

Relation (2) then tells us that 

N 

caj(@; - pj)W; = (dpj)UJj. 
i=I 

Assume now that the semi-simple point 60 is regular, so that the p; ‘s are distinct. Equating 
coefficients gives ai = 0 for i # j and d/_Lj = 0, which is precisely what we wanted to 
prove. ??

Remark. The proof given in [lo] (due to Reshetikin) shows that the branches of the spectral 
cover associated with simple eigenvalues are Lagrangian. This is a little bit more general 
than what we have here. 

Now, to globalise this property, the only thing we need to do is to give an intrinsic meaning 
to the closedness of Sz. This is achieved by the choice of a flat connection (if this exists) 
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on E, as this gives a prefered class of local trivialisations of the bundle and an exterior 
derivative do. 

Definition 1.2. A triple (E. R, V) is a Frobenius bundle if (E. i2) is a Higgs pair. V is a 
flat connection on E and dvR = 0. 

The global version of Lemma 1.1 is then: 

Proposition 1.3. Let (E. Q, V) he LI Frobenius bundle o\‘er M. Jf there e.rist.s ~1 reguk~~ 
semi-simple) point in M, the spectrul collar is u Lagrungirm sub\wriety of’ T* M. 

Proc?f: If there is one regular semi-simple point, almost all points are regular semi-simple. 
Moreover, it suffices to prove the property over a neighbourhood of such a point. c 

Remark. Note that, by its very definition, the canonical (Liouville) form h on T*M. re- 
stricted to the local branch of L defined by W, is just the eigenvalue p. In other words. if 
we call ,f;,, the inclusion of the local branch of L in T’M. 

Restriction to a subvarieq and synplectic reduction. Suppose now that j : B + M is the 
inclusion of a submanifold, so that j*T*M is a co-isotropic subvariety of T*M. At least at 
semi-simple points, the spectral cover is locally the graph of a I -form and thus is transversal 
to j*T*M. 

This is a simple form of the symplectic reduction process that the intersection I. n 
(j*T*M) projects to a Lagrangian subvariety LL( c T* B. Of course. we have: 

Proposition 1.4. The Lugrangiun subvarieg LB is the .spec.trcrl Lqrungirm trssocicrtrd bcith 
the Frobenius bundle (j’E. j*6?. j*V) over B. 

Proof: The spectral cover for 

j’Q : B - End( j*E) 

is defined by the eigenvalues p; (01,c) of G{(a) for < E B. CY E Tc B c Tc M. In other 
words, one considers the section p; of T’M as a section of T* B by restriction and this is 
the definition of the symplectic reduction explained above. 0 

1.3. The Higgs puir associated with 11 ring structure 017 L,ector$eld.s 

Suppose now that M is a manifold such that each tangent space Tc M is endowed with a 
ring structure q, such that: 
I. The formula 
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(in which < E M, u E Tt M, so that L?,(a) is an endomorphism of Tc M and 526 ((w) . ,6 
is the image of the element /I E T(M) defines a l-form R with values in End(TM), i.e., 
a morphism 

Q : TM - End(TM). 

2. All the identities I( of the various tangent spaces fit together into a (global) vector field 1. 
Associativity and commutativity of q imply: 

Lemma 1.5. f2 A J2 = 0. 

Prooj By definition, fit(a) . (Q&l) . y) = IY *E (B *c ~1, so that 

(52 A Q)c(o, B) . v = ;[Q+)> Q,(B>l Y 
=ga*t (B*t VI-B*t (a*6 v)l. 0 

The products *c give the sheaf 0~ of local sections of TM (vector fields) a ring structure. 
We know that (TM, l2) is a Higgs pair over M, let us now look at the associated spectral 
cover L c T*M. As above, it is defined by 

52 : Sym(TM) -+ End(TM), 

but the identity element of the ring structure of Tt M gives us a map 

End(TM) --+ TM 

cp+-+ V(l) 

such that the composition 

Sym(TM) -+ End(TM) -+ TM 

is just the product 

(‘C? cx, .“’ *a,,) +-+ (C>ol *{ . ..*.$a.) 

Thus 0~ can be considered as the ring sheaf of regular functions on some subvariety of 
T*M. Notice that the morphism Sym( T M) -+ TM is obviously onto (as a sheaf morphism) 
so that the inclusion L C, T’M is a closed immersion in the algebro-geometrical sense. 

Proposition 1.6. The ring sheqf (0~~ *) is the sheaf of regular functions on the spectral 
cover L associated with (TM, R). 

Proof: This is almost tautological. As L is defined as the support of 0~ as an OT*M- 
module, a function f : T*M + C vanishes on L if and only if it annihilates 8~. But this 
means that, changing e’s to *‘s inside the polynomial f, 

It remains to use the identities lt of our rings Tc M to get the result. 0 
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The Lugrunge property. So far, we have only used the ring structure on Tc M and more 
precisely, to summarise: 
- associativity and commutativity of *c imply that (TM, Cl) is a Higgs pair (Lemma 1 S). 
_ identity 1~ to interpret functions on T’M as vector fields on M and the spectral cover L 

as the spectrum of the ring (8~. *). 
Let us now assume that M is endowed with a flat connection V such that dvR = 0. This 
is the case for instance when M is a Frobenius manifold (see [5,12] and below). 

Proposition 1.7. Assume there is u point (0 E M such that the ring Tt,, M is a semi-simple 
ring. !f Vfi = 0. then the spectral cover is Lagrangian. 

Remark. 
- The assumption means that, for any < in a neighbourhood of 60, there exists a basis 

(WI (0. . . w,v([)) of Tc M such that 

for some non-zero pi (<): the algebra Tc M splits as a sum @E, C 1~;. 
_ Notice that this semi-simplicity property would be a consequence of the fact that there 

exists an element CY in Tc,,M such that the endomorphism .Q,,((;Y) = 01 *to has distinct 
eigenvalues. 

- Although our spectral cover usually has singularities, ’ the Lagrange property needs only 
be checked at non-singular points. 

Proof of Proposition 1.7. This would follow from Propositions 1.3 and 1.6 if 60 were a 
regular semi-simple point. 3 In the case at hand, where 52 is defined by a semi-simple ring 
structure, one can replace the argument in the proof of Proposition 1.3 by the following 
one. Differentiate wj * w,, = wj to get 

2 du)i * ulj = dwj. 

Use then that w, * Wj = 0 for i # j to get 

N 
2OjWj = Cajw;, 

i=l 

so that dt/,jj = 0, and (2) with dQ = 0 gives 

(dpj)wj = 0. ??

2 However, acceding to Proposition 1.6, the structural sheaf is the sheaf of sections of a vector bundle, $0 
that the singularities are rather soft. 

3 As pointed out to me by E. Markman, in this case semi-simplicity implies regular semi-simplicity. 



190 M. Audin/Journal of Geometry and Physics 25 (1998) 1X3-204 

1.4. Frobenius manifolds 

If we mix the structures described in Sections 1.2 and 1.3 together, we eventually get the 
Frobenius manifold structure (see [5,12]). Here is the definition we shall use: 

Definition 1.8. A pre-Frobenius manifold structure on the manifold M is a Frobenius struc- 
ture (TM, Q, V) on its tangent bundle such that the formula 

defines unital ring structures on the tangent spaces Tt M 

Remark. Notice that associativity, existence of identity and R A Q = 0 imply commuta- 
tivity. 

Frobenius specialists would insist on various other structures, e.g. V should be the Levi- 
Civita connection associated with a flat metric on M and there should be an Euler vector 
field q. This is a vector field which rescales all the structures. 4 It satisfies, in particular 

c&2 = R 

and this implies homogeneity of the Lagrangian subvariety with respect to q. Also, in 
the Frobenius world language, a manifold with a Frobenius structure satisfying the semi- 
simplicity assumption above is called massive. In this language, Proposition 1.7 implies: 

Corollary 1.9. The spectral cover associated with a massive Frobenius manifold is a 
(homogeneous) Lagrangian subvariety. 

Canonical coordinates. At a semi-simple point, the eigenvalues p; define N independent 
closed l-forms on the N-manifold M. Local primitives (xl, . . xN) give coordinates on M 
which are what Frobenius people use to call canonical coordinates, so that Corollary 1.9 is 
just a global way to state the existence of these coordinates. In canononical coordinates 
- our 1ui’s are the a/ax; and our identity vector field is 

lF=&;(&d 
i=l j=, axi 

(note that the Wi ‘s commute in the Lie algebra of vector fields because the p; ‘s are closed 
1 -forms), 

- our matrix ti is just the diagonal (dxt , . . . , dXN), 
- moreover, for any choice of the primitives (xi, . , XN), the (local) vector field r] = 

Cxia/axi satisfies C,S2 = R. 

4 The Euler vector field q and the identity vector field I generate an infinitesimal action of the affine group 
of the line on the Frobenius manifold. 



Also. R being closed implies that it can be written locally as the derivative of some 
mapping 

S : M - End(TM). 

This is where the potential of the Frobenius manifold comes from. 
The metric and rhepotentiul. As we have already mentioned it. in the Frobenius landscape. 

there is also aflat metric on the manifold M. the flat connection used so far being its Levi- 
Civid connection. It has to satisfy a couple of compatibility conditions among which the 
compatibility with the product. which can be put in the following form: for any 6 E M. any 
(Y E Tt M, 52~ (CY) is a self-adjoint endomorphism of Tc M. 

With this assumption. working in flat coordinates, a primitive S of Q can be assumed to 
be self-adjoint as well (replace S by i(S + ‘S) to get a self-adjoint primitive). Then. as a 
local section of the self-adjoint endomorphisms of TM, S must be the second derivative of 
some function F : M + C, which is the potentinl of the Frobenius structure. 

The associativity and commutativity of the products *c can be translated in a system of 
third-order partial differential equations, the WDVV equurion. 

1.5. A simple exumple: u@lding :“+’ 

Baby-Humit: space. Before giving applications of these constructions to quantum co 
homology, it is useful to look at a simple example. Let E be the affine space of all complex 
manic degree-(n + 1) polynomials of the form 

P(Z) = ?+I + UIl?’ + ‘. + UI. 

This belongs to (at least) two families of Frobenius manifolds: it can be considered first 
as the space of the universal deformation of the singularity ;“+I - and thus, it belongs to a 
family evocated in Section 1. Also. it is the space of all meromorphic functions on a genus-0 
curve with a single order-n + I prescribed pole - and thus it is the simplest example of a 
Hurwitz space (a space of coverings of P’, see [5, Ch. VI). 

The tangent space TpE is canonically identified with the vector space E of polynomials 
of degree less than or equal to 17 - 1. To emphasise the dependence on P. we will prefer to 
write 

this is of course a ring, so that we are indeed in the situation of Section 1.3. 
The .spec.trul coveI: Eigenvalues of the multiplication are easily found: write that B(Z) is 

a (common) eigenvector of the multiplication *p: 

(Y(L) *p ,Hk) = ,uP(cr)B(Z). 

i.e.. 

(Y(z)/~(;) = pp(a)B(z) + P'(z)QkJ 
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and evaluate at a root u of P’ to get 

so that the ~_~p(a) = (Y(U) (for P’(u) = 0) are natural candidates for the eigenvalues. 
Computing more carefully gives: 

Lemma 1.10. VP’(z) = (n + 1) n<z - UiY’, the characteristic polynomial of the multi- 
plication a! *p . is (-1)” n(Z - a(Ui))*‘. 

Proo$ Let o be a degree 5 n - 1 polynomial. For any complex number u, decompose (Y 
according to the Taylor formula to get 

a(z) a(u) ff’h) 1 dk-‘J(u) 
(Z= (z _ u)k + (z - up+1 +. ‘. + (k-l)! (Z-U) 

+ Q(z). (3) 

If u is a multiplicity-m root of P’, define m polynomials 

P’(z) 
L%(Z) = (z _ u)k (1 5 k 5 m). 

Multiply both sides of (3) by P’(z) to get 

ak-’ (u) 
Ct! *P Bk = a(U)/% + a’(U)&, +. . . + ~ 

(k - I)!“’ 

Thus the m-dimensional subspace of 7’pE spanned by the /&‘s is stable under multipli- 
cation *p and the cz*p’s are (simultaneously) triangular in this basis, with a(u)‘s on the 
diagonal. 0 

The spectral cover is the subvariety 

L = ((P, p) E & x E* 1% E C such that P’(u) = 0 and p(a) = a(u)] 

Lagrange property. We do not need to find a connection and apply any previous result, 
as L is “obviously” Lagrangian, according to a neat generating function trick: let 

be the evaluation mapping (P, z) I-+ P(Z). Consider the subvariety of E x @ defined by 
d,S = 0: 

L: = {(P, z) I E x c I P’(z) = 0) 

so that the image of 

C + T*& 

(P, z) - (P, dpS) 



M. Audin/Journal of Grometty and Physics 25 (19Y8) IK-204 

is a Lagrangian subvariety of T*l. As S is affine in the variable P, 
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(dpS)p.;(a) = a(z) 

and this Lagrangian subvariety is our spectral cover. 
Cunonicul coordinates. The generating function contains all desired information. e.g. 

local primitives of the eigenvalues - as these are written dpS! 

Proposition 1.11 (see e.g. [5,12]). Near a polynomial PO M’ith II distinct critical point 
(uy, . , ui), the n,functions 

p I-+ (P(LII) ,.... P(4)) 

are a Set of canonical coordinates. 

Here is the dual basis. For P in a suitable neighbourhood of PO. let (u, . . . u,,) be the 
n distinct roots of P’. According to the computation in Lemma 1.10. 

u;(z) - p’(=) (1 li In) 
. Uf 

constitute a basis of eigenvectors. By definition 

Ui ??P ‘li = Gi,jUj(Uj)Uj 

and Vj(Uj) = P”(Uj), SO that the basis 

1 P’(z) 
IQ(Z) = -~ 

P”(U;) (z - u;) 
(1 ‘isn) 

satisfies 

Wi *p Wj = 
w.i ifi = j, 
0 otherwise. 

Other pieces of the Frohenius structure. First of all, there is a 1 -form 8 on E. defined by 

It defines a non-degenerate bilinear form using the product: 

(a. Bjp = OP(CY *p B) = -Resoo (“(Z;f;;;dZ). 

At generic points, in the basis (WI. . . . , w,) constructed above. 

1 

(Wi, lllj) p = P”(Uj) 
ifi = j. 

0 otherwise, 
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so that the bilinear form is diagonal in canonical coordinates, where it has the expression 

12 

c 
dx; 

j=l 
P”(Uj) ’ 

as it should [ 121. 
Notice that to produce all these data (in particular the cannoical coordinates) and to check 

their properties, we have used only basic properties of the polynomials and their roots. A 
more significant property of the metric above is that it isJut: there is another set of local 
coordinates in which the metric has constant coefficients. 

In the second part of this paper, we will consider an example (quantum cohomology) 
in which the Frobenius manifold is an affine space and the natural linear coordinates are 
flat coordinates. This is not the case here, and it is not that obvious to construct the flat 
coordinates. The idea is to write 

z(w, f) = w + fi + 
W 

. ..+A$+... 

and to solve 

P(z(w, t)) = wn+’ 

near z = 00, thus defining local flat coordinates (tl, . . . , t,) (see [5,12,191). 

2. Applications to quantum cohomology 

It is recent folklore (see [5,12,15]) that the quantum cohomology of a symplectic manifold 
should be a Frobenius manifold. Of course, this statement must be made more precise, as 
there are so many variants of “quantum cohomology”. Moreover, this Frobenius structure 
is usually presented through the “Gromov-Witten potential”, i.e., with computations in 
coordinates, as Frobenius people are interested in solutions of WDVV equations. We will 
try to precise the various quantum products being used and to present what we need of the 
Frobenius structure as geometrically as possible. 

2. I. Gromov- Witten invariants 

There are many variants of definitions of Gromov-Witten invariants in symplectic and/or 
algebraic geometry. In all cases, the formalism is rather heavy and I do not want to spend 
much time and place on it. I will use the most elementary approach-if not the more general. 
The aim here is just to fix the notation, which I will try to make coherent with that of [ 11. I 
send the reader to [2,16] for the properties of holomorphic curves and to the original paper 
of Ruan and Tian [ 171 for precisions on Gromov-Witten invariants for weakly monotone 
manifolds and proofs. 

More general constructions, working for all symplectic manifolds, rely on the beautiful 
idea of “stable maps” due to Kontsevich [ 131 and make use of a notion of fundamental class 
which can be rather sophisticated (see e.g. [6,14,20]). 
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Definitions. A symplectic manifold (IV. w) is monotone if its first Chem class (‘1 is a 
positive multiple of the cohomology class of the symplectic form w. It is weakly monotone 
if any homology class A such that (w. A) > 0 and (cl, A) > 3 - n satisfies (cl. A) 2 0. 

This property ensures that, for any generic almost complex structure J calibrated by w, 
the first Chem class of X, evaluated on the class of a J-holomorphic sphere. is non-negative. 

On a weakly monotone symplectic manifold (X. w). Ruan and Tian define Gromov- 
Witten invariants as elements in bordism groups of pseudo-cycles L?!“(Xk x X’). 

Given a class A E Hz(X; Z), denote by MA (J. u) the space of solutions u : P’ -+ X of 
the modified Cauchy-Riemann equation ~JU = 11 which represent the class A. Denote by 
z = (;I. . CA) a k-uple of distinct points in P’. Suppose now that k > 3 and I E N are 
given, then P/t, is defined as the class of the evaluation mapping 

ev,.l : MA(J. u) x y’ x .:. x P)_ --+ X x x X x X x . x X 
Y- -/ 

I times L times I times 
(LI. (I,. .1(j) +--+ (U(Zl). . . u(;l,). u(tl). . . u(t)) 

in Q~~+2(c,.A)+2,(Xk x X’) for a generic pair (J. V) (see [ 171 or [ 11). 
If one forgets the assumption k > 3, one has to take into account the reparametrisation 

group Gk of (P’ , z) (which is trivial if k > 3), namely 
_ PSL (2; @) if k = 0 (it has real dimension 6), 
_ the group of affine transformations of @ if k = 1 (it has dimension 4), 
- the group of dilations of C if k = 2 (it has dimension 2). 

The group Gk has dimension sup(6 - 2k. 0). it acts on MA (J. v) x (P’ )’ by 

g (u. II, . .1 (7) = (u 0 g-‘. g(1. . . gQ) 

and the evaluation mapping factors through this action, defining 

evZ,I : MA(J. u) xc,! (PI)’ - Xk+‘. 

Theorem 2.1 [ 16,171. Let ( W, w) be a weakly monotone symplectic man@ld of dimension 
2n. Let A be an element of H2(X: Z). Ifk 5 2. assume A # 0. Then,for generic (.I. v). the 
evaluation mapping 

evZ,I : MA(J. u) XG~ (P’)‘-X” x X’ 

dqfines a pseudo-cycle of dimension 2n + 2(cl, A) + 21 - dim Gn and thus a morphism 

@, : H*(X”+‘)-+Z 

The intersection number 

(MA(J, VI x P’)‘, ev,,t).(al @...C3ak@bl @..~@h) 

is denoted PkAl(a] 8.. . @ aklbl 8.. &I bl). If Ll E H,(Xk). b E H,(X’). we will also use 

the notation &kf,(aib) for P,,e,(a @ b). 
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We will need a few elemantary properties of the Gromov-Witten invariants just defined. 
Symmetry. Recall that, given a geometric holomorphic non-constant rational curve C C 

X, to fix the values u(zi) of a holomorphic parametrisation at three distinct points zt , z2 
and z3 of P’ actually determines the parametrisation. From this, one easily deduces: 

Proposition 2.2. Let A be a non-zero homology class, Assume 1 2 1. Then for any classes 
a, b, c and d in H,(X), y in H,(X’-‘), 

Using the obvious symmetry properties of the Gromov-Witten invariants, one gets: 

Corollary 2.3. Let A be a non-zero homology class. Assume 1 1: 1. Then for any classes 
a, b, c and d in H,(X), y E H,(X’-‘), 

@t(a @ b 63 cld 8 y) = *-$(a 8 b @ dlc 8 y). 

Degree-2 classes. It is in the nature of the Gromov-Witten invariants that codimension-2 
cycles play a special role. Here is a property that illustrates this assertion. 

Proposition 2.4. Let t be a degree-2 cohomology class. Let x be the Poincare dual homol- 
ogy class. Then, for all a E H,(Xk), b E H,(X’), 

Proofi One wants to check that the diagram 

Hd(Xk x X’) - Hd+2(n4Xk x Xl+‘) 

(in which the top arrow is y H y @ x) is commutative, which is more or less obvious from 
the definition of the Gromov-Witten invariants: 

’ (MALL u) x P ) I+‘, ew+l) . (Y @xx> = t(MA(J, u), ev,.j) . y)(u,[P]). 

2.2. Quantum cup-products 

Notation. Assume as usual that H2(X; Z) is torsion free - or denote by H2(X; Z) the 
torsion free part of the second homology group. Let A be its group ring, A = Z[ H2(X; Z) 1, 
and denote q A the (multiplicative) counterpart in A of A E H2(X; Z). 

If the symplectic manifold (X, w) is only weakly monotone, replace A by an ad hoc com- 
pletion A,, e.g. the Novikov ring associated with the symplectic form, viewed as a morphism 

w : H2(X; Z)-+R. 
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We will use as systematically as possible the convention that Latin (resp. Greek) characters 
denote homology (resp. cohomology) classes, Poincare duality exchanging corresponding 
characters (e.g. Da = a, D.$ = x). 

The quantum cup-product at a point <. The invariant *$,((a @ h 8 L.IX @ @ .\-) is 
non-zero only when 

2n(l+3)-(dima+dimb+dimc+Idimx)=2n+2(c~.A)+21, 

and in particular, if codim x # 2, for at most one value of 1. If codim x = 2. let < be the 
dual (degree-2) cohomology class and apply Proposition 2.4 to get 

c 
/?(I 

jl;~~~(u~beoclx~...~x)=~~~(u~ha3(.)expi5.A). 

In any case, the sum 

defines a complex number for all A, u, b, c, x E H,(X). Eventually: 

Proposition 2.5. For CY, B, { E H*(X), c E H,(X), the equulig 

(cr*t,, B,c) = ~;~~ly,a,(u~b~clx~...Q?.r)q~ 
A I 

defines an element CY *c,~ p E H*(X) @ A,. Extending *c.~ by linearity gives H*(X) @ A,,, 
the structure of a unitul commutative (in the graded sense) ring. 

The associativity is by no mean a triviality, but follows from the composition rules of 
[ 171. The identity element is the identity element of the cup-product, i.e., the dual of the 
fundamental class. 

There are many variants of definitions of “quantum cup-product”. This is the most general 
version, as it depends on the point <, and, because of the variables q (and the use of the 
Novikov ring A,), there is no convergence problem in the definition. 

There are basically two ways to get a less general structure: to specialise, either at a value 
of 6, or at a value of q, the latter leading to the mentioned convergence problems. 
- To specialise at < = 0 would give the “usual” quantum product, a formal series in y. 

denoted u * B, a ring structure on QH*(X) := H*(X) ~3 A,,. 
- To specialise at q = I, allowing < to be any cohomology class, but assuming the series 

defining OL *t.t jl, that we will denote CY *t 0 to converge (this will be the case. at least. 
if (X. w) is monotone). 

According to a terminology suggested by Manin, we will call the former the small quantum 
product, and the latter the global quantum product. 

Remark. As we shall see in Section 2.4, these two appearently different specialisations 
are deeply related. 
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2.3. The quantum cohomology H&s pair 

In this section, we will assume that (X, w) is monotone or more generally that the series 

cc 
A I 

converges for all a, b and c in H,(X), defining the global product a! *c /J by 

To avoid sign problems, we will consider only the even-dimensional part of the coho- 
mology of X. Define 

M = @ H2’(X; ‘C). 

The product *c defines a l-form Q and a Higgs pair (TM, !Z) over the manifold M. Notice 
that, M being a vector space, its tangent bundle has a canonical trivialisation. It is well 
known that: 

Proposition 2.6. dR = 0. 

Proo& One just computes (dS2)t on two vector fields. As A4 is a vector space, one can use 
constant vector fields, so that the formula for the exterior derivative is simply 

(da)6 (a, B) = o . (Qc (B)) - B . (J-2, (a)). 

Now (using the dot . with two different meanings, both for differentiation along a vector 
field and for action of an endomorphism on a vector), 

which is symmetric in a and b as we have noticed it in Corollary 2.3. 0 

Remark. Except for the fact that we have not specified the Euler vector field, 
Propositions 2.5 and 2.6 together with an assumption allowing us to specialise *t,y at 
q = 1 say that the quantum product gives the even part of the cohomology of a symplectic 
manifold a Frobenius structure. 



The following consequence of Proposition 2.6 is mentioned in 191: 

Corollary 2.7. Assume 40 is a semi-simple point of’ HI’ (X: C). On ~1 neighhourhood of’&,, 
the spectral cover of the quantum product is a Lagrangian .suhvariety. 

Example (The case of I!?‘). Let p E H’(P’) be the generator. One easily checks that 

P ??f,,+t, ,, P = e fl . 

2.3. Restriction to degree-2 classes 

Quantum multiplication ut a given point vs. formal series. As we have noticed it above 
(see Section 2.2), if c is degree-2 class, 

(cu *t B, c.) = c p&((u @ h 8 c) exp(c. A). 

an expression which depends only on the class [(I of 6 in H’(X; C/2i37Z). Recall from 
Section 2.2 that the constant quantum product is given by 

(a *B. c) = c @&(a @b @ c)q”, 

which is exactly the same thing (write q” = exp(<, A)). In other words, to compute 01 eE fi 
in H*(X: C) amounts to the same as to compute (Y * b in H*(X) @ A and to specialise 
it at the corresponding value of q. This is a very good motivation to look at degree-2 
classes. 

Remark. One can define in the same mood a variant of the global quantum product: in the 
formula for *E.~, replace q A by exp(o, A) for some fixed class W. usually the cohomology 
class of the symplectic form. 

Symplectic reduction. Let us use the same notation as in Section I. I. Consider the 
submanifold 

B = H’(X: @) L M = @H2k(X; C) 

and apply the reduction process explained in Section I. I to get a Lagrangian subvariety 
LB c T*B. 

Specilically, to look at j*T*M is the same thing as to look at the product *e for < E H’. 
i.e., the constant quantum product. The intersection L ~3 j*T*M thus describes the relations 
in the quantum cohomology ring Q H*(X). 

Example. The quantum cohomology of the complex Grassmannians has been computed 
e.g. in [3,2 1,241. Recall that 
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where 
_ xi is the ith Chern class of the tautological k-plane bundle, 
_ yi is the ith Chern class of the orthogonal (n - k)-plane bundle (both xi and yi have 

degree 2i), 
- as dim B = dim H2(G,l(@“); Z) = I, one adds a single variable q; as ct (TGk(C”)) = 

fn, q has degree n; this is the multiplicative version of < E B, more precisely, if L is 
the generator of Hz(Gk(@“); Z), q = exp({, L). 

_ the ideal 3 is generated by the relations obtained from 

(I + txt +. . . + +&)(I + ty] f.. . + P$_k) = 1 + (-I)“_5”q 

by identifying the coefficients of the powers of t. 
Notice moreover that xt , . . . , Xk generate the ring H*(X), so that the ideal ,7 actually 

describes L f’ j*T*M in j*T*M. To get the reduced Lagrangian LB, one needs just to 
project on the (xl, q)-space. 

To illustrate the process, here is the complete calculation in the case k = 2, II = 4. The 
coefficients oft and t* in the equation above give yt and y2 in terms of XI and x2: 

.Yl = -xl, y* = -x* +x;. 

The coefficients of t3 and t4 are then, respectively, 

,Y; - 2x133, x:x* - x; 

so that QH*(G2(C4)) Y Z[xt, x2, q]/(xf - 2x1~2, x:x2 - xi - q). The Lagrangian 
LB is 

L~=((x1,~)13x2suchthat(xl,x2,q) EJ) 
= ((Xl 3 q)bf = %I. 

As this example shows it, the reduced Lagrangian LB does not seem to be very meaningful 
in general. Let us make now a crucial assumption on the manifold X. We assume that the 
(classical) cohomology algebra H*(X) is generated by H*(X), its degree-2 part. Denoting 
by S*(X) = S[H*(X; C)] the symmetric algebra on H*(X; C), this means that the natural 
ring morphism 

F(X)-H*(X) 

is onto. This is the case, e.g. for projective spaces and more generally toric manifolds, 
complete flag manifolds, etc. 

Using the notation of [ IO], call (pt , . . . , pk) a basis of H*(X). The quantum cohomology 
ring QH*(X) = (H*(X; C) @ A, *) then consists of polynomials in p and q, with some 
relations. In other words, we have a surjective homomorphism: 

S*(H*(X; ‘0) @ C]&(X; Z)l-OH’(X), 
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the kernel of which will be denoted by 3. The ring in the LHS is nothing other than the 
ring of regular functions on the cotangent bundle T*B of the torus B = H2(X; @/2ixZ). 
Notice that, with this remarkable notation, the symplectic form on T*t? is C dp; A dq; /q, . 

As the reduction mod 2irrZ is a covering map B + B we get: 

Corollary 2.8 (Givental and Kim [lo]). Assume (X. W) is u (monotone) symplectic muni- 

,fold whose cohomology ring is generated by degree-2 classes. Assume that, ,for some v&e 
of q, the quantum product gives H*(X) the structure of a semi-simple ring. Then Q H*( X) 
is the ring oJfunctions on a Lagrangian subvarieg of the cotangent bundle T’f3 of the torus 
I3 = H’(X: C/2inZ). 

Example (The complex projective space). It is well-known that 

QH*P’*) g @[p, q, q-‘l/(p”+ -q) 

so that the Lagrangian is the curve p”+’ = q in C x C*. 

Example (The plane blown-up at a point). Recall from [ 11 that 

QH’(fi2) ” @[PI> p2, q+&‘l/(p; + p; - p2q2 - zq,q;‘, p1p2 +qlq;‘). 

This is an easy exercise5 to check that these relations indeed define a Lagrangian in 
T’(C)‘. 

Let us conclude by a list of remarks on this result. 
The semi-simplicity assumption. According to a conjecture of Tian [23], the semi- 

simplicity assumption might be automatically satisfied in Fano manifolds. There are (non- 
monotone) Kahler manifolds for which this is not satisfied. The most obvious example is 
that of K3 surfaces, whose quantum cohomology ring is nilpotent. 

Poisson commuting relations. This result (Corollary 2.8) was proved by Givental and 
Kim as a comment of their theorem on flag manifolds. Recall that they have found that, 
in this case, the Lagrangian subvariety was a common level set of first integrals of the 
Toda lattice. Notice that Corollary 2.8 says that the ideal J is stable under Poisson 
bracket: 

.f. s 62 J- =+ {_f. gl E J-. 

In the case of flag manifolds, the property they get is much stronger: there exists a system 
(.f’l , . . . ,fk) of generators of J which Poisson commute. 

This is not the case in general: one can check for instance that the ideal defining the 
quantum cohomology of the plane blown-up at a point cannot be generated by two 
Poissson commuting elements. Moreover, this property of being defined by an integrable 

’ In the computation for this example in [ 171, a sign is wrong. This was also the case in the preliminary 
version of [I]. I noticed the mistake exactly because I was trying to check Corollory 2.8 on this example. 
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system would imply that LB is a complete intersection and it is quite easy to find exam- 
ples in which LB is not, e.g. P2 blown-up at two points (this is left as an exercise for the 
reader). 

Homogeneity property and the first Chem class. Recall now that QH*(X) is a graded 
ring, the grading being defined by the natural grading on H’(X) and by the first Chem 
class on A: if A E H2(X; Z), degqA = 2(c), A). As a consequence, the ideal 3 is quasi- 
homogeneous. Let n be the vector field on B which is the generator of the V-action 

e’ . ([Cl, a) = ([c + zc11, e-a). 

Write the Cartan formula C,, = di, + i,d and apply it to the Liouville form. Obviously 
&,h = h and i,h = cl, so that, if j : L c T*B is the inclusion, 

j*h = C,(j*h) = di,, j*h + i,dj*h. 

As j*h is closed, we get 

j*k = d(clI~). 

Thus, the first Chem class is a primitive of the Liouville form on L. 
This is of course the “degree-2 version of the homogeneity property with respect to the 

Euler vector field mentioned in Corollary 1.9. 
Closedness of the form I2 and degree-2 classes. To prove that dQ = 0 (Proposition 2.6), 

we have used the symmetry property of Gromov-Witten invariants enclosed in 
Proposition 2.2. If one is interested only in degree-2 classes, it can be noticed that this 
is a consequence of the property (a variant of Proposition 2.4): 

Proposition 2.9. Let (X, w) be a weakly monotone symplectic manifold of dimension 2n. 
Let A be a non-zero element of Hz(X; Z). For any a, b E H,(X; Z), 

!&$(a 63 b 63 x) = E, A)!P&(a 63 b). 

The proof of Proposition 2.6 can be replaced by: 

=(y. c p&(b 63 c ~3 Y) exp( , t, A) 
A 

= c $“o(b 63 c ~3 Y)(W 4 exp( , t, 4 
A#0 
(as the derivative of the A = O-term vanishes) 

=c r472fo(c @ v)(B, A)& A) exp(<, A) 
AfO 

(as deg ,5) = 2), an expression which is symmetric in (Y and B. 



M. Audin/Journal ofGeometry and Physics 25 (1998) 1X3-204 

It is also easy to find a primitive of Q. Precisely, let 

S : H2(X: C)- End(H*(X; 02)) 

be the mapping defined by 

(S(O . a. b) = (u . b . x) + c P&h 63 b) exp((, A). 
A#0 

It is easily checked that dS = 62. 
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